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Abstract. This work investigates the geometric foundations of modern
stereo vision systems, with a focus on how 3D structure and human-
inspired perception contribute to accurate depth reconstruction. We re-
visit the Cyclopean Eye model and propose novel geometric constraints
that account for occlusions and depth discontinuities. Our analysis in-
cludes the evaluation of stereo feature matching quality derived from
deep learning models, as well as the role of visual attention mechanisms
in recovering meaningful 3D surfaces. Through both theoretical insights
and empirical studies on real datasets, we demonstrate that combining
strong geometric priors with learned features provides internal abstrac-
tions for understanding stereo vision systems.

Keywords: Explainable Stereo Vision · 3D Scene Understanding · Depth
Estimation · Visual Human Perception.

1 Introduction

This paper addresses the problem of stereo vision, recovering a 3D scene from
the left (L) and right (R) images of the scene. With the advent of deep learning
(DL) and the availability of datasets, a high level of accuracy has been achieved
in stereo by RAFT-Stereo [15], CREStereo [13], DLNR [27], Selective-IGEV [22],
LoS [14], and more recently by FoundationStereo [23], LG-Stereo [26], DEFOM-
Stereo [11], MonoStereo [4], StereoAnywhere [1], and S2M2 [17]. In these ap-
proaches, during training the input is a stereo image pair, and the loss function
is based on the discrepancy between the model predicted disparity map and the
ground truth (GT) disparity. Once trained, a DL-based stereo model can infer
the disparity from a new pair of images. In close examination, these methods
first extract features from the left and right images and then perform dispar-
ity estimation at each pixel. Despite DL-based stereo achieving state-of-the-art
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(SOTA) performance in benchmarks, there is a lack of understanding on how
to go from features to disparity output.

Understanding this problem means uncovering meaningful internal represen-
tations that capture its structure, as is the case of image stereo features. Not
only enables better generalization to novel situations, it also facilitates broader
application of the underlying principles. Our goal is to deepen our understand-
ing of stereo vision in addition to feature extraction. By developing abstract 3D
representations of reality, we aim in the future to improve the performance and
efficiency of stereo algorithms and also to lay the groundwork for using such 3D
models in other areas of computer vision.

1.1 Geometrical Ideas in Stereo Vision

In our pursuit of a deeper understanding of stereo vision, we adopt a Bayesian
framework in which the problem is formulated as estimating the most probable
3D surface, S3D, given a stereo pair of input images, IL and IR. Specifically,
stereo vision aims to solve:

argmax
S3D

P (S3D|IL, IR) = argmax
S3D

[
P (IL, IR|S3D)P (S3D)

]
where P (IL, IR|S3D) models the likelihood of observing the image pair given a
hypothesized 3D surface, and P (S3D) is a prior distribution that encapsulates
geometric regularities of natural surfaces.

1.2 Brief History of Geometric Ideas in Stereo

The study of such geometric principles long predates Bayesian formalism. As
early as 1499, Leonardo da Vinci, in Treatise on Painting, observed that differ-
ent parts of the background become occluded depending on whether one views
the scene with the left or right eye [5]. Later, Hermann von Helmholtz [9] laid
foundational work in binocular vision, emphasizing its role in depth perception.
He introduced the concept of the cyclopean eye – a notional single eye positioned
centrally on the head – representing the brain’s fused interpretation of binocu-
lar input. This idea also serves as a useful geometric abstraction: a coordinate
system centered between the eyes for representing 3D surfaces.

Further contributions came from Julesz [12], who championed the cyclopean
framework and a bottom-up approach to stereo vision, later advanced by Marr
and Poggio [16] through a computational model of stereopsis. These studies,
and much of the computational modeling up to the early 2000’s, laid a concep-
tual foundation that preceded the current dominance of purely data-driven DL
methods.

1.3 Our Contribution

In this work, we revisit and extend geometric ideas to model P (S3D), present in
equation (5), and analyze these ideas with data from the Middlebury dataset [19]
and RAFT-Stereo [15] features that yield FM∗.
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Our main contribution is on Foundational Vision Understanding by
deepens our understanding of 3D scene geometry, paving the way for more in-
terpretable, generalizable and reliable vision systems.

More specifically, the contributions are as follows:
– Features: an analysis of the quality of the features when learned and extracted
by DL algorithms from the L/R images.
– Geometric Constraints: a proposal of novel geometric constraints for stereo
vision.
– Cyclopean Eye Model: its role in better understanding the geometry of
stereo vision.
– Attention: we argue for the need of an attention mechanism to recover 3D
surfaces.

2 The Cyclopean 3D View

We begin by briefly reviewing the Cyclopean coordinate system (XD), which
provides a natural framework to describe the geometry of the 3D world. In
particular, the relation between the match of the left and right features and the
depth assignment is elucidated, so that in the next section we propose novel
geometrical constraints.

2.1 Cyclopean Coordinate System (XD)

Consider a left and right images IL, IR both with height and width M × N .
A pixel coordinate system (CS) for the images are {(e, l), (e, r)} where e ∈
(0, 1, . . .M − 1) index their respective epipolar lines and l, r ∈ (0, 1, . . . N − 1)
(see Figure 1). For many datasets, such as Middlebury [19], the images have been
rectified by the epipolar lines, which are then simply the horizontal lines of the
images. The space (e, x, d) ∈ M × 2N × D allows us to describe the matching
of (e, l) ↔ (e, r) as an assignment of a disparity d to (e, x) (see Figures 1, 2,
and 3). Such matching and associated assignment is described by the invertible
coordinate transformation: (

d
x

)
=

(
1 −1
1
2

1
2

)(
l
r

)
. (1)

One consequence of this transformation is that the discrete cyclopean width
coordinate x ∈ (0, 1

2 , 1,
3
2 , . . . , N−1, N− 1

2 ) has subpixel resolution, twice as much
as the image pixel width resolution of l, r ∈ (0, 1, . . . , N − 1) (see Figure 1).

The XD provides a depth value D(e, x), for each match (e, l) ↔ (e, r), as
follows

D(e, x) = f
B

d(e, x)
, (2)

where f is the focal length, B is the baseline (distance between the left and right
camera centers), see Figure 2.
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Fig. 1. Space Transformation from L/R CS (left) to the XD (right). The colors repre-
sent a disparity value. Empty positions in XD space are disallowed, while the ’red dot’
data are obtained via a bilinear interpolation from LR data. The XD space has twice
the resolution of the LR space, for each epipolar line.

2.2 Depth from L, R, and XD

From Figure 2 we infer the following triangle relations

DL(e, l) =

√
D2(e, x) +

(
B

2
− x

)2

and

DR(e, r) =

√
D2(e, x) +

(
B

2
+ x

)2

(3)

These relationships introduce a bias in the depth estimation from the L and
R cameras relative to the XD depth values. To the best of our knowledge, these
bias equations have not been derived previously. The impact becomes evident
when comparing depth estimates with man-made GT scenarios. A consequence
of mismatches in L/R depth estimation yield, for example, motion sickness in
virtual reality [24].

Proposition 1 (Datasets Depth in XD). The depth provided by the Middle-
bury dataset, and most man-made datasets, is obtained by the match generated
by a light projector (or laser) through Formula (2). Thus, it is not the depth
from the L or R coordinate system.

3 Image Features for Stereo Matching

Image features are the first stage of processing for DL algorithms and in partic-
ular RAFT-Stereo [15] architecture allows other DL algorithms to extract their
features, making them one of the most used features in deep learning.
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Fig. 2. DL/R(e, l/r) is the depth from L/R CS, respectively. A point P in 3D is de-
scribed by the XD as P = PC(e, x, Z = D(e, x)). The same point can be described by
the L/R CS as P = PL,R(e,Xl,r,D(e, x)), where Xl,r ̸= l, r, since l, r are the projective
projection of P into the L/R CS, while Xl,r is the simpler orthogonal projection of P
into the L/R CS. Note that B = |Xl −Xr|. The distance to P measured by the L, R,
and cyclopean eye are DL(e, l),DR(e, r),D(e, x), respectively, and they are all different.

A Bayesian interpretation for the use of features FL
∗ and FR

∗ from left and
right images, respectively, is as follows

P (IL, IR|S3D) =
∑

FL,FR

P (IL, IR, FL, FR|S3D)

=
∑

FL,FR

P (IL, IR|FL, FR)P (FL, FR|S3D)

≈ P (IL, IR|FL
∗ , FR

∗ )P (FL
∗ , FR

∗ |S3D)

= P (IL, IR|FL
∗ , FR

∗ )P (FM∗|S3D) ,

where FL
∗ , FR

∗ dominate the sum and RAFT-Stereo [15] also does the following
computations

FM(e, x, d(e, x)) = 1− FMS(e, x, d(e, x))

max(FMS(e, x, d(e, x))
, where

FMS(e, x, d(e, x)) = FL(e, x− 1

2
d(e, x)) · FR(e, x+

1

2
d(e, x)) ,

and d(e, x) is the cyclopean disparity that describes the 3D surface. Thus, the
feature matching similarity (FMS) must be large when there is a good feature
match and FM(e, x, d(e, x)) ∈ [0, 1] is used so that good matches render these
values small and bounded to the [0, 1] range.
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In the Bayesian view, SOTA DL algorithms, e.g., RAFT-Stereo [15], break
the stereo problem

argmax
S3D

P (S3D|IL, IR) (4)

in two stages, first extracting features FL
∗ , FR

∗ from left and right images and
then performing in the second stage

argmax
S3D

[
P (S3D|FM∗)

]
= argmax

S3D

[
P (FM∗|S3D)P (S3D)

]
(5)

Figures 4, 5, 7, and 8 show the quality of their extracted FM∗(e, x, d(e, x))
yielding a fairly sparse description in the matching space. In various regions,
where data matching is available, it allows a visualization of the S3D solution
that maximizes the likelihood P (FM∗|S3D).

Our data investigations led us to Figure 8 where multiple matches occur
associated with a left image feature or with a right image feature. However, a
final solution must choose only one of them to be correct. In Figure 5 multiple
matches occur for the same Cyclopean Eye coordinate x and in this case, human
perception chooses one match. Also, there are no good feature matches in regions
of occlusions such as in Figure 4 and neither on homogeneous regions such as in
Figure 7. Thus, all these scenarios lead us to conclude that for a S3D solution,
given the features, there is a need for a prior P (S3D) to help solve for the stereo
problem, which we study next.

4 Geometrical Constraints (GCs)

We will now address three geometrical constraints that provide the basis for our
understanding and analysis of geometrical properties in stereo vision. When cre-
ating a stereo algorithm these constraints could be expressed by a prior P (S3D)
present in equation (5). However, in this paper we do not attempt to create a
stereo algorithm. The format we present this section is by introducing the defi-
nitions needed for us to articulate a geometrical constraint proposition followed
by an analysis with real datasets.

Definition 1 (Opaque Surfaces and Stereo). 3D opaque surfaces do not let
light pass through them. Consider a 3D point P = (X,Y, Z) that belongs to an
opaque surface. If it is visible by L or R, we can describe it as (e, l,DL(e, l)) or
as (e, r,DR(e, r)), respectively.

Note that if P is visible by both eyes, as illustrated in Figure 2, we have (e, l) ↔
(e, r = l − dL(e, l)) and so (i) the disparities satisfy dL(e, l) = dR(e, r = l −
dL(e, l)), but in general DL(e, l) ̸= DR(e, r); and (ii) the assignment d(e, x)
derived from (1) yields D(e, x) from (2), but D(e, x) ̸= DL(e, l),DR(e, r) as seen
from (3).
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Definition 2 (Transparent Surfaces and Stereo). Transparent surfaces al-
low some light to pass through. Two distinct points P1,2 = (X1,2, Y1,2, Z1,2) are
in a transparent pair state if both can be seen by the XD and share the same
(e, x) coordinates. Transparent stereo surfaces are made of a set of contiguous
transparent-pair states.

With these two definitions, we state a geometrical constraint

Proposition 2 (Opaque-GC). For opaque surfaces each cyclopean coordinate
(e, x) has one and only one disparity, i.e., d is a function d : (e, x) → R.

Note that this constraint is to be interpreted as prior geometrical constraint.
Figure 3 illustrates this constraint, while Figure 4 shows data that validate this
constraint.

Fig. 3. An epipolar slice of a surface with left occlusion region and its description by the
XD. Left. A top view of the epipolar slice of the surface and the two eyes projections.
The baseline B connects L to R focal centers. The depth axis describe the inverse of
disparity (Equation (2) depicted). Right. A discrete XD, a rotation of the L/R CS
described by Equation (1). Note that the L CS is pointing down. The two red vertical
dashed lines delimit the R occlusion area which are associated with a L discontinuity
along the horizontal blue dashed line with a jump of the same size as the right occlusion,
as described by Da Vinci-GC in Proposition 3. Note that the only two (2) light green
squares (the ones without an "y" in them) are seen by the XD associated with the
R occlusion, satisfying one disparity per coordinate x (as postulated by Opaque-GC),
which is half of the size of the R occlusion area.

However, a scenario with opaque surfaces may not satisfy this rule. More
precisely, it is possible in some special scenarios for two 3D points P1, P2, visible
by the left eye as (e, l1), (e, l2) and by the right eye as (e, r1), (e, r2), to satisfy
that both have the same x = l1+r1

2 = l2+r2
2 but different disparities, for example,
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Fig. 4. Occlusions: The LR space displays FM distances associated with the epipolar
lines e = 128 (red), where FMe,x(d) ∈ [0, 1]. Dark regions (low values of FM) represent
good matches. Da Vinci-GC is verified with L/R-occlusions in dashed-red, associated
with the L/R-discontinuities in white (jumps). In the cyclopean eye these are 45 degrees
jumps. Moreover, the Opaque-GC (unique disparity per cyclopean eye coordinate) is
also verified. This figure also presents an association of the LR Space data/occlusions
with the RGB LR images, where the points A and B in the LR Space denotes the
start/end of the blue flower.

for the case of thin objects in front of backgrounds, as shown in Figure 5. Thus,
it is suggested that this rule is applied to recover surfaces. In these scenarios the



The Role of Cyclopean-Eye in Stereo Vision 9

above constraint, used as prior knowledge, will then force the solution to choose
either one pair of matches or the other, but not both.

Fig. 5. Uniqueness: The LR Space displays FM distances associated with the epipo-
lar lines e = 128 (red), where FMe,x(d) ∈ [0, 1]. The Opaque-GC requires that either
the solution recovers the thin pole in front or ignore it. On the right we show the
solution that recover the thin pole in front with Da Vinci-GC, i.e., with the L/R-
discontinuities in white (jumps). From the cyclopean eye these are 45 degrees changes.
The Opaque-GC is consistently applied. Note that L/R-occlusions in dashed-red end
up being expanded to regions where other possible good feature matches exist (low
FM values). This figure also presents an association of the LR Space data/occlusions
with the RGB LR images, where the points A and B denotes the start/end of the pole.
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Human perception faces this "dilemma" when, for example, placing a finger
in front of a scene (see Figure 6). In this case, humans can either focus on
the finger or in the background and reconstruct the 3D structure of the finger
(ignoring background) or background (ignoring the finger). It is the attention
mechanism that makes the choice of how to apply the GC-constraint and ignore
the alternative solution. Historically, studies of binocular rivalry have played an
important role in understanding visual attention [18, 3]. However, today we do
not see any attention mechanism being used by SOTA stereo.

Fig. 6. Human perception experiment: This figure illustrates a stereo vision ex-
periment with two objects in a scene: a left hand and finger (front) and a text frame on
a wall (back). 1) The top-left subfigure shows the wall, and the text frame containing
the phrase "Love is not the only answer". The green regions (e.g the sequence of words
’Love’, ’is’, ’the’, and ’answer’) represent the text seen by both L/R views, while the red
regions (e.g the words ’not’, and ’only’) represent half occlusions. 2) The bottom-left
subfigure shows the experiment in another perspective, where the red intersection point
represents the position of the front object (finger) exactly in the middle of L/R eyes,
that is, facing the Cyclopean Eye (orange). The finger cause an occlusion into the right
and left eyes in the words ’not’ and ’only’, respectively. When analyzing the left and
right views individually (subfigures Blue-A) the left eye sees the phrase ’Love is not the
answer’, the right eye sees the phrase ’Love is the only answer’. The human cyclopean
eye (subfigures Orange-B) decides which object to pay attention, either directing the
focus into the finger (front) or in the text frame (back). If the attention (Front Focus)
is at the finger (front), the background seems to be blurred and duplicated. However, if
the attention (Back Focus) is at the Background (wall + text frame), the finger (front)
seems to be transparent, blurred and duplicated. Interestingly, by the cyclopean view it
is possible to combine the data from the L/R view, then it is possible to see the entire
phrase ’Love is not the only answer’. Observe that this experiment is in accordance
with the propositions 2 and 3. Also, the choice of focusing on the finger data offers a
solution similar to the scenario in Figure 5.
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Definition 3 (Occlusions and Discontinuities). R- (L-) occlusions are re-
gions that are seen by the R (L) eye but not by L (R). R- (L-) discontinuities
are places where jumps of disparity (or of depth) occur in the R (L). L- and
R-occlusions are termed half-occlusions [2, 21].

As first observed by Da Vinci 3D opaque surfaces follow GCs that link discon-
tinuities to occlusions, see also [7, 8, 2, 10]. We next describe our new proposed
GCs.

Proposition 3 (Da Vinci-GC). In the cyclopean eye the jumps along an
epipolar line must occur along the 45 degree angles. Equivalently, the size of
the jump of a R- (L-) discontinuity is equal to the size of the L- (R-) occlusion.

Figure 3 illustrates this constraint. Figure 4 and Figure 5 show and provide
an analysis of the disparity jumps of 45 degrees. Da Vinci-GC was proposed in
the works [7, 10]. To the best of our knowledge, Da Vinci-GC in the cyclopean
eye has not been proposed before. Figure 5 illustrates the consistency between
Da Vinci-GC and Opaque-GC, where a solution that satisfies one constraint also
satisfies the other constraint, both constraints forcing a solution to choose which
data to focus on and which data to ignore.

Note that if a prior with this constraint is to be applied at some stage of
a stereo algorithm, then the final disparity values assigned at such occlusion
locations must be processed at a later stage. Feature matching also fails at
homogeneous regions as we discuss next.

Definition 4 (Homogeneous Regions). Homogeneous regions are areas in
an image that lack texture. All stereo feature responses in these regions provide
equally poor matches.

Figure 7 illustrates homogeneous regions in real data. Feature matching at
homogeneous regions does not discriminate which disparity to choose. Thus,
feature matching does not provide data do discriminate the disparity for homo-
geneous regions nor for occlusion regions.

Definition 5 (Repetitive Patterns). Objects with similar textures may create
repeated patterns (multiple matching possibilities) in the LR and XD space. Al-
though stereo feature responses in these regions may provide equally good matches,
only the correspondence that correctly aligns the beginning and end of the object
represents the true solution.

Figure 8 illustrates repetitive patterns caused by an object composed of sim-
ilar visual structures and textures. This example demonstrates a scenario where
feature matching alone is insufficient to determine the correct disparity. Unlike
homogeneous regions, which lack strong matching candidates, repetitive pattern
regions yield multiple false-positive matches.

Proposition 4 (Filling-GC). For regions where the data matching does not
offer a clear solution, a prior geometrical constraint satisfying Da Vinci-GC
should be applied to recover the disparity function d(e, x) everywhere in the cy-
clopean eye.
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Fig. 7. Homogeneity: The LR space displays FM distances associated with the
epipolar lines e = 30 (red), where FMe,x(d) ∈ [0, 1]. Dark regions represent low FM
and good matches. Note that shadows do yield good matches. However, in order to fill
in homogeneous regions, surface priors become necessary.

We conclude this section by pointing out the importance of Gaussian Cur-
vature as a 3D prior for Filling-GC. While Dong et al. [6] proposes CAD mod-
els reconstruction by enforcing zero Gaussian Curvature in developable surface
patches, da Silva et al. [20] demonstrated that the best Stereo-Vision techniques
nowadays on the main benchmarks tend to reconstruct surfaces with low Gaus-
sian Curvature as a prior. The new generation of stereo approaches leverage
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Fig. 8. Repetitive Patterns: The LR space displays FM distances associated with
the epipolar lines e = 464 (red), where FMe,x(d) ∈ [0, 1]. Dark regions represent low
FM and good matches. Note the red object behind the pole with a repetitive pattern
in the LR space, causing multiple good matches. However, an optimal solution which
align with the beginning (left-most part) of the object and satisfying the geometrical
constraints is the ground truth solution represented by light-green inside the pink box
in the right-most subfigure.

stereo matching, 3D geometry priors, and also provide surface consistency by
combining monocular features (e.g from DepthAnythingV2 [25]).
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5 Conclusion

We presented an analysis of the geometric foundations underlying 3D stereo
vision. Starting with the Cyclopean Eye model, we incorporated geometric con-
straints that account for depth discontinuities and occlusions, showing how this
model combines information from both left and right eyes into one unified per-
spective. The Cyclopean Eye, in turn, supports the attention-based mechanisms
employed by human stereo vision.

Our investigation emphasized the role of geometric structure in understand-
ing and interpreting 3D scene reconstruction. We analyzed the quality of stereo
feature matching derived from deep learning models, proposed novel geometric
constraints tailored to stereo vision, and highlighted how these constraints help
interpret the performance of data driven methods.

Together, these contributions reinforce the idea that combining strong ge-
ometric priors with learned features leads to more interpretable, generalizable,
and reliable stereo vision systems. Ultimately, our goal is to underscore the im-
portance of 3D geometric modeling in capturing critical visual information and
guiding the development of next-generation vision approaches.

Acknowledgments. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
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